

Slide 1 / 233

AP Calculus AB

Limits & Continuity

2015-10-20

www.njctl.org

SI	id		2	/	2	2	2
OI	ıu	ヒ		/	\angle	J	J

-	1	_ 1			^ -	4 -	
П	2	n	0	OT.		nte	nte
П	ıaı	v		VI.	v	1117	ents

click on the topic to go to that section

Introduction

The Tangent Line Problem

Definition of a Limit and Graphical Approach

Computing Limits

The Indeterminate form of 0/0

Infinite Limits

Limits of Absolute Value and Piecewise-Defined Functions

Limits of End Behavior

Trig Limits

Continuity

Intermediate Value Theorem

Difference Quotient

Slide 3 / 233

	Slide 4 / 233
Introduction	
Pot vite	
Return to Table of Contents	
The History of Calculus	Slide 5 / 233
Calculus is the Latin word for stone. In Ancient times, the Romans used stones for counting and basic arithmetic. Today, we know Calculus to be very special form of counting. It can	
be used for solving complex problems that regular mathematics cannot complete. It is because of this that	
Calculus is the next step towards higher mathematics following Advanced Algebra and Geometry.	
In the 21st century, there are so many areas that required Calculus applications: Economics, Astronomy, Military, Air Traffic Control, Radar, Engineering, Medicine, etc.	
	Slide 6 / 233
The History of Calculus	
The foundation for the general ideas of Calculus come from ancient times but Calculus	
itself was invented during the 17th century. The first principles were presented by Sir Isaac	
Newton of England, and the German mathematician Gottfried Wilhelm Leibnitz.	
	_

The History of Calculus	Slide 7 / 233
Both Newton and Leibnitz deserve equal credit for independently coming up with calculus. Historically, each accused the other for plagiarism of their Calculus concepts but ultimately their separate but combined	
works developed our first understandings of Calculus. Newton was also able to establish our first insight into	
physics which would remain uncontested until the year 1900. His first works are still in use today.	
The History of Calculus	Slide 8 / 233
The two main concepts in the study of Calculus are	
differentiation and integration. Everything else will concern ideas, rules, and examples that deal with these two principle concepts.	
Therefore, we can look at Calculus has having two major branches: Differential Calculus (the rate of change and slope of curves) and Integral Calculus (dealing with accumulation of quantities and the areas under curves).	
accumulation of quantities and the areas under curves).	
The History of Calculus	Slide 9 / 233
Calculus was developed out of a need to understand continuously changing quantities.	
Newton, for example, was trying to understand the effect of gravity which causes falling objects to constantly	
accelerate. In other words, the speed of an object increases constantly as it falls. From that notion, how can one say determine the speed of a falling object at a specific instant	
in time (such as its speed as it strikes the ground)? No mathematicians prior to Newton / Leibnitz's time could answer such a question. It appeared to require the impossible: dividing zero by zero.	
impossible. dividing zero by zero.	

The History of Calculus	Slide 10 / 233
Differential Calculus is concerned with the continuous / varying change of a function and the different applications associated with that function. By understanding these concepts, we will have a better understanding of the behavior(s) of mathematical functions.	
Importantly, this allows us to optimize functions. Thus, we can find their maximum or minimum values, as well as # determine other valuable qualities that can describe the function. The real-world applications are endless: maximizing profit, minimizing cost, maximizing efficiency, finding the point of diminishing returns, determining	
velocity/acceleration, etc.	
The History of Calculus	Slide 11 / 233
The other branch of Calculus is Integral Calculus . Integration is the process which is the reverse of differentiation. Essentially, it allows us to add an infinite amount of infinitely small numbers. Therefore, in theory, we can find the area / volume of any planar geometric shape. The applications of integration is the state of the control of the state of th	
integration, like differentiation, are also quite extensive.	
The History of Calculus	Slide 12 / 233
These two main concepts of Calculus can be illustrated by real-life examples:	
1) "How fast is a my speed changing with time?" For instance, say you're driving down the highway: Let s represents the distance you've traveled. You might be interested in how fast s is changing with time. This	
quantity is called velocity, v. Studying the rates of change involves using the derivative. Velocity is the derivative of the position function s. If we think of our distance s as a function of time denoted s = f(t),	
then we can express the derivative $v = ds/dt$. (change in distance over change in time)	
	I .

The History of Calculus	Slide 13 / 233
Whether a rate of change occurs in biology, physics, or economics, the same mathematical concept, the derivative, is involved in each case.	
The History of Calculus	Slide 14 / 233
2) "How much has a quantity changed at a given time?" This is the "opposite" of the first question. If you know how fast a quantity is changing, then do you how much of an	
impact that change has had? On the highway again: You can imagine trying to figure out how far, s, you are at any time <i>t</i> by studying the velocity <i>v</i> .	
This is easy to do if the car moves at constant velocity: In that case, distance = (velocity)(time), denoted s = v*t. But if the car's velocity varies during the trip, finding s is a	
bit harder. We have to calculate the total distance from the function $v = ds/dt$. This involves the concept of the integral.	
1 What is the meaning of the word Calculus in Latin?	Slide 15 / 233
○ A Count ○ B Stone	
○ C Multiplication○ D Division	
○E None of above	

OA Count OB Stone OC Multiplication OD Division OE None of above	Slide 15 (Answer) / 233
2 Who would we consider as the founder of Calculus? A Newton B Einstein C Leibnitz D Both Newton and Einstein E Both Newton and Leibnitz	Slide 16 / 233
Who would we consider as the A Newton B Einstein C Leibnitz D Both Newton and Einstein E Both Newton and Leibnitz	Slide 16 (Answer) / 233

3 What areas of life do we use calculus? ○ A Engineering ○ F Chemistry ○ B Physical Science ○ G Computer Science ○ C Medicine ○ H Biology ○ D Statistics ○ I Astronomy ○ E Economics ○ J All of above	Slide 17 / 233
3 What areas of life do we use compared to the second of t	Slide 17 (Answer) / 233
4 How many major concepts does the study of Calculus have OA Three OB Two OC One OD None of above	Slide 18 / 233

4 How many major concepts does OA Three OB Two OC One OD None of above	Slide 18 (Answer) / 233
5 What are the names for the main branches of Calculus?	Slide 19 / 233
○ A Differential Calculus○ B Integral Calculus○ C Both of them	
5 What are the names for the may us? O A Differential Calculus C	Slide 19 (Answer) / 233
○ A Differential Calculus ○ B Integral Calculus ○ C Both of them	

The History of Calculus	Slide 20 / 233
The preceding information makes it clear that all ideas of Calculus originated with the following two geometric problems:	
1. The Tangent Line Problem Given a function f and a point $P(x0, y0)$ on its graph, find an equation of the line that is tangent to the graph at P . 2. The Area Problem Given a function f , find the area between the graph of f and an interval $[a,b]$ on the x-axis.	
In the next section, we will discuss The Tangent Line problem.	
This will lead us to the definition of the limit and eventually to the definition of the derivative.	
	Slide 21 / 233
The Tangent Line Problem	
•	
Return to	
Table of Contents	
The Tangent Line Problem In plane geometry, the tangent line at a given point (known	Slide 22 / 233
simply as the tangent) is defined as the straight line that meets a curve at precisely one point (Figure 1). However, this definition is not appropriate for all curves. For example, in Figure 2, the line	
meets the curve exactly once, but it obviously not a tangent line. Lastly, in Figure 3, the tangent line happens to intersect the curve more than once.	

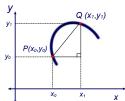
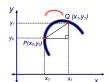
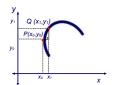

Figure 3.

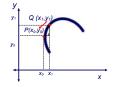
Figure 2.

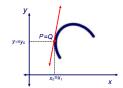
Let us now discuss a problem that will help to define a slope of a tangent line. Suppose we have two points, $P(x_0, y_0)$ and $Q(x_1, y_1)$, on the curve. The line that connects those two points is called the secant line (called the secant).


We now find the slope of the secant line using very familiar algebra formulas:


$$m_{\text{sec}} = \frac{\text{rise}}{\text{run}} = \frac{y_1 - y_0}{y_1 - y_0}$$

The Tangent Line Problem


If we move the point Q along the curve towards point P, the distance between x_1 and x_0 gets smaller and smaller and the difference x_1 - x_0 will approach zero.



The Tangent Line Problem

Eventually points *P* and *Q* will coincide and the secant line will be in its *limiting* position. Since P and Q are now the same point, we can consider it to be a tangent line.

Slide 24 / 233

Slide 25 / 233

Now we can state a precise definition. A Tangent Line a secant line in its limiting position. The slope of the tangent line is defined by following formula:

$$m_{tan} = m_{sec} = \frac{y_1 - y_0}{x_1 - x_0}$$
, when x_1 approaches to x_0 ($x_1 - x_0$), so $x_1 = x_0$.

Formula 1.

The Tangent Line

The changes in the *x* and y coordinates are called increments.

As the value of x changes from x_1 to x_2 , then we denote the change in x as $\Delta x = x_2 - x_1$. This is called the increment within x.

The corresponding changes in y as it goes from y_1 to y_2 are denoted $\Delta y = y_2 - y_1$. This is called the increment within y.

Then Formula 1 can be written as:

$$m_{tan} = \frac{\Delta y}{\Delta x}$$
, when x_2 approaches x_1 , $(x_2 \rightarrow x_1)$, so $\Delta x \rightarrow 0$.

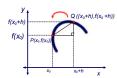
Formula 1a.

The Tangent Line

Note: We can also label our y's as $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Therefore, we can say that

$$m_{\text{sec}} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} , \text{ which will imply}$$

$$m_{tan} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta f(x)}{\Delta x}, \text{ when } \Delta x \rightarrow 0.$$
Formula 1b.


The Formula 1b is just another definition for the slope of the tangent line.

Slide 26 / 233

Slide 27 / 233

Slide 28 / 233

Now we can use a familiar diagram, with the new notation to represent an alternative formula for the slope of a tangent line.

Note.

When point Q moves along the curve toward point P, we can see that $h \rightarrow 0$.

$$m_{tan} = \frac{f(x_0 + h) - f(x_0)}{x_0 + h - x_0} = \frac{f(x_0 + h) - f(x_0)}{h} , \text{ when } h \to 0.$$
Formula 1c.

6 What is the coordinate increment in x from A(-2, 4) to B(2,-3)?

 $\bigcirc A$ -4

 \bigcirc B 7

 \circ C -7

 $\bigcirc D$ 0

OE 4

Slide 30 / 233

What is the coordinate increment to B(2,-3)?

Ε

 \bigcirc A -4

 \bigcirc B

 \circ c -7

 \bigcirc D 0

ΟE 4 Slide 30 (Answer) / 233

7 What is the coordinate increment in y from A(-2,4)	Slide 31 / 233
to B(2,-3)?	
OB 7 OC -7	
○D 0 ○E 4	
	Slide 31 (Answer) / 233
7 What is the coordinate increm to B(2,-3)?	
OA -4 OB 7	
OC -7 OD 0	
○E 4	
Example 1	Slide 32 / 233
For the function $f(x) = x^2-1$, find the following:	
a. the slope of the secant line between $x_1 = 1$ and $x_2 = 3$; b. the slope of the tangent line at $x_0 = 2$; c. the equation of the tangent line at $x_0 = 2$.	
a. the slope of the secant line between $x_1 = 1$ and $x_2 = 3$; Let us use one of the formulas for the secant lines:	
$m_{\text{sec}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} =$	

Example 4 For the function $f(x) = x^2 - 1$, 1	Slide 32 (Answer) / 233
a. the slope of the secant line b. the slope of the tangent by c. the equation of the tangent $m_{\text{sec}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(3) - f(1)}{3 - 1} = \frac{f(3) - f(1)}{3 - 1}$	
a. the slope of the secant line $\frac{(3^2 - 1) - (1^1 - 1)}{2} = \frac{8}{2} = 4$	
Let us use one of the formula	
$m_{\text{sec}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} =$	
	Slide 33 / 233
	Slide 33 (Answer) / 233

Example 2	Slide 34 / 233
For the function $f(x) = 3x + 11$, find the following:	
a. the slope of the secant line between $x_1 = 2$ and $x_2 = 5$; b. the slope of the tangent line at $x_0 = 3$; c. the equation of the tangent line at $x_0 = 3$.	
	Slide 34 (Answer) / 233
Example 2	
For the fun	
a. the slow b. the slow c. y=3x+11	
the given equation represents a line. Line has the same slope at all points, and it's a tangent to itself.	
	Slide 35 / 233
Example 3 For the function $f(x) = 2x^2 - 3x + 1$, find the following:	Sildo 30 / 200
a. the slope of the secant line between $x_1 = 1$ and $x_2 = 3$; b. the slope of the tangent line at $x_0 = 2$:	
c. the equation of the tangent line at $x_0 = 2$.	

Example 3	
For the function <i>f</i> (<i>x</i>	
a. the slope of the : a. 5;	
b. the slope of that	
c. the equation o	
c. the equation ost *Note: At some points on interval the	
secant line may have the same slope	
as a tangent line. We will discuss this result again later on in the course.	
Example 4	Slide 36 / 233
Example 4	
For the function $f(x) = x^3 + 2x^2 - 1$, find the following:	
a. the slope of the secant line between $x_1 = 2$ and $x_2 = 4$;	
b. the slope of the tangent line at $x_0 = 3$; c. the equation of the tangent line at $x_0 = 3$.	
Use formula 1b for part b.	
	Slido 36 (Angwar) / 222
Example 4	Slide 36 (Answer) / 233
For the function $f(x) = x^3 + 2x^2 - 1$, find the following:	
.,	
a. the slope of the secant line between $x_1 = 2$ and $x_2 = 4$; b. the slope of the tangent line at $x_0 = 3$;	
c. the equation of the tangent line at $x_0 = 3$. Use formula 1b for part b.	
Use formula 1b for part b.	

Slide 35 (Answer) / 233

Example 5 For the function $f(x) = \frac{2}{x}$, find the following: a. the slope of the secant line between $x_1 = 3$ and $x_2 = 6$:	Slide 37 / 233
a. the slope of the secant line between $x_1 = 3$ and $x_2 = 6$; b. the slope of the tangent line at $x_0 = 4$; c. the equation of the tangent line at $x_0 = 4$. Use formula 1c for part b.	
	Slide 37 (Answer) / 233
	Slide 38 / 233
Definition of a Limit and Graphical Approach	
Grapmear Approach	
Return to Table of Contents	
Contents	

0 in the Denominator

In the previous section, when we were trying to find a general formula for the slope of a tangent line, we faced a certain difficulty:

The denominator of the fractions that represented the slope of the tangent line always went to zero.

You may have noticed that we avoided saying that the denominator equals zero. With Calculus, we will use the expression "approaching zero" for these cases.

Slide 40 / 233

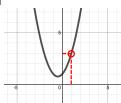
Slide 39 / 233

Limits

There is an old phrase that says to "Reach your limits": Generally it's used when somebody is trying to reach for the best possible result. You will also implicitly use it when you slow down your car when you can see the speed limit sign.

You may even recall from the previous section that when one point is approaching another, the secant line becomes a tangent

line in what we consider to be the *limiting* position of a secant line.


Limits

Now we will discuss a certain algebra problem.

Suppose you want to graph a function:

$$f(x) = \frac{x^3 - 1}{x - 1}$$

For all values of x, except for x = 1, you can use standard curve sketching techniques. The reason it has no value for x = 1 is because the curve is not defined there. This is called an unknown, or a "hole" in the graph.

Slide 41 / 233

Limits

In order to get an idea of the behavior of the curve around x = 1 we will complete the chart below:

Х	0.75	0.95	0.99	0.999	1.00	1.001	1.01	1.1	1.25
f(x)	2.3125	2.8525	2.9701	2.9970		3.003	3.030	3.310	3.813

You can see that as x gets closer and closer to 1, the value of f(x) comes closer and closer to 3. We will say that the *limit* of f(x) as x approaches 1, is 3 and this is written as

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3$$

Slide 43 / 233

Slide 42 / 233

Limits

The informal definition of a limit is:

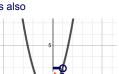
"What is happening to y as x gets close to a certain number."

The function doesn't have to have an actual value at a particular x for the limit to exist. Limits describe what happens to a function as x *approaches* the value. In other words, a limit is the number that the value of a function "should" be equal to and therefore is trying to reach.

Formal Definition of a Limit

We say that the limit of f(x) is L as x approaches c provided that we can make f(x) as close to L as we want for all x sufficiently close to c, from both sides, without actually letting x be c. This is written as $\lim_{x \to c} f(x) = L$

and it is read as "The limit of f of x, as x approaches c, is L. As we approach c from both sides, sometimes we call this type of a limit a **two-sided limit**.


\circ	ida	11	/	233
1	1/1/	2121	/	/ 7 7

Two-Sided Limit

In our previous example, as we approach 1 from the left (it means that value of x is slightly smaller than 1), the value of f(x) becomes closer and closer to 3.

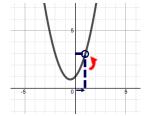
As we approach 1 from the right (it means that value of x is slightly greater than 1), the value of f(x) is also getting closer and closer to 3.

The idea of approaching a certain number on x-axis from different sides leads us to the general idea of **a two-sided limit**.

Left and Right Hand Limits

If we want the limit of f(x) as we approach the value of c from the left hand side, we will write $\lim f(x)$.

If we want the limit of f(x) as we approach the value of c from the right hand side, we will write $\lim_{} f(x)$.

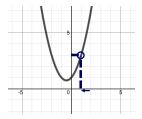

Slide 46 / 233

Slide 45 / 233

Left Hand Limit

The one-sided limit of f(x) as x approaches 1 from the left will be written as

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^{3} - 1}{x - 1} = 3.$$



Slide 47 / 233

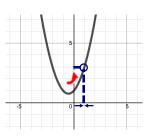
Right Hand Limit

The one-sided limit of f(x) as x approaches 1 from the right will be written as

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^3 - 1}{x - 1} = 3.$$

Slide 48 / 233

Slide 50 / 233


	Slide 49 / 233

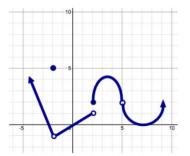
LHL=RHL

So, in our example

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = 3$$

Notice that f(c) doesn't have to exist, just that coming from the right and coming from the left the function needs to be going to the same value.

Limits with Graphs - Example 1


Use the graph to find the indicated limit.

$$\lim_{x \to -2^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to -2^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to -2^{+}} f(x) = \underline{\qquad}$$

$$f(-2) = \underline{\qquad}$$

Slide 52 / 233

Limits with Graphs - Example 1

Use the graph to find the indicate

$$\lim_{x \to -2^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to -2^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to -2} f(x) = \underline{\qquad}$$

$$f(-2) = \underline{\qquad}$$

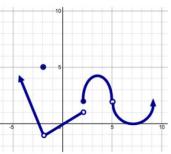
$$\lim_{x \to 2^{-}} f(x) = -1$$

$$\lim_{x \to 2^{+}} f(x) = -1$$

$$\lim_{x \to 2^{+}} f(x) = -1$$

$$f(-2) = 5$$

Slide	52	(Ans	wer)	/ 233
-------	----	------	------	-------


Use graph to find the indicated limit.

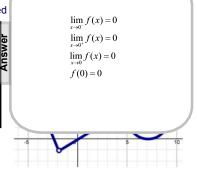
$$\lim_{x \to 0^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 0^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 0} f(x) = \underline{\qquad}$$

$$f(0) = \underline{\qquad}$$

Limits with Gr


Use graph to find the indicated

$$\lim_{x \to 0^{-}} f(x) = \underline{\qquad}$$

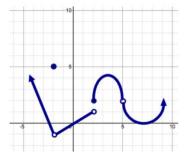
$$\lim_{x \to 0^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 0} f(x) = \underline{\qquad}$$

$$f(0) = \underline{\qquad}$$

Slide 53 (Answer) / 233

Limits with Graphs - Example 3


Use graph to find the indicated limit.

$$\lim_{x \to 2^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 2^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 2} f(x) = \underline{\qquad}$$

$$f(2) = \underline{\qquad}$$

Slide 54 / 233

Limits with Graphs - Example 3

Use graph to find the indicate

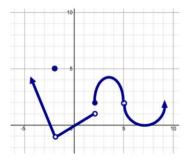
$$\lim_{x \to 2^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 2^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 2} f(x) = \underline{\qquad}$$

$$f(2) = \underline{\qquad}$$

Limits with Graphs - Example 4


Use graph to find the indicated limit.

$$\lim_{x \to 5^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 5^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 5} f(x) = \underline{\qquad}$$

$$f(5) = \underline{\qquad}$$

Slide 55 / 233

Slide 54 (Answer) / 233

Limits with Graphs - Example 4

Use graph to find the indicated

$$\lim_{x \to 5^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 5^{+}} f(x) = \underline{\qquad}$$

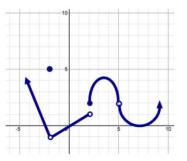
$$\lim_{x \to 5} f(x) = \underline{\qquad}$$

$$f(5) = \underline{\qquad}$$

Answer	$\lim_{x \to 5^{-}} f(x) =$ $\lim_{x \to 5^{+}} f(x) =$ $\lim_{x \to 5} f(x) =$ $f(5) = DN$	= 2	
-5	V	5	10

Slide 55 (Answer) / 233

Limits with Graphs - Example 5


Use graph to find the indicated limit.

$$\lim_{x \to 7^{-}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 7^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 7} f(x) = \underline{\qquad}$$

$$f(7) = \underline{\qquad}$$

Limits with Graphs - Example 5

Use graph to find the indicate

$$\lim_{x \to 7^+} f(x) = \underline{\qquad}$$

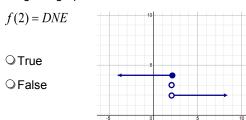
$$\lim_{x \to 7^+} f(x) = \underline{\qquad}$$

$$\lim_{x \to 7} f(x) = \underline{\qquad}$$

$$f(7) = \underline{\qquad}$$

Answer	$\lim_{x \to 7^-} f(x) = 0$ $\lim_{x \to 7^+} f(x) = 0$ $\lim_{x \to 7} f(x) = 0$ $f(7) = 0$	
	V	10

Slide 56 (Answer) / 233


Slide 56 / 233

Slide 57 / 233

Slide 57 (Answer) / 233
Slide 58 / 233
Slide 58 (Answer) / 233

10	Use the given	graph to	answer	true/falsesta	tement
	USC LITE GIVETI	graph to	answei	li uc/iaiswic	

Slide 59 / 233

10	
10 Use the given graph t	
f(2) = DNE	
○ True ○ False	False <i>f</i> (2) = 4

Slide 59 (Answer) / 233

	Slide 60 / 233

Slide 60 (Answer) / 233

12 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

$$\lim_{x \to -\Gamma} f(x) = \underline{\qquad}$$

Slide 61 / 233

12 Use the given graph to determine it exists. If it doesn't exist, enter +\infty +\infty
$\lim_{x \to -1^-} f(x) = \underline{\hspace{1cm}}$
-5 0
<u> </u>

Slide 61 (Answer) / 233

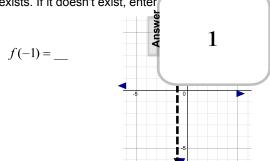
13 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D

$$\lim_{x \to -1^+} f(x) = \underline{\qquad}$$

Slide 62 (Answer) / 233

14 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

$$\lim_{x \to -1} f(x) = \underline{\qquad}$$


CI	ida	62 /	233
O	IUC	05/	200

Slide 63 (Answer) / 233

15 Use the given graph to determine the following value, if it exists. If it doesn't exist, enter DNE.

Slide 64 / 233

15 Use the given graph to determine the following value, if it exists. If it doesn't exist, enter

Slide 64 (Answer) / 233

Slide 6	35 /	233
---------	------	-----

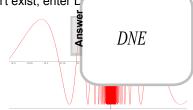
16 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D'

Slide 65 (Answer) / 233

17 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

$$\lim_{x \to +\infty} f(x) = \underline{\qquad}$$

Slide 66 / 233


18 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

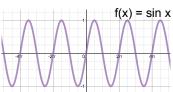
$$\lim_{x\to 0} f(x) = \underline{\hspace{1cm}}$$

Slide 67 / 233

18 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D

$$\lim_{x\to 0} f(x) = \underline{\hspace{1cm}}$$

Slide 67 (Answer) / 233


19 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D

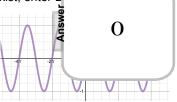
$$\lim_{x \to -\infty} f(x) = \underline{\qquad} \qquad DNE$$

Slide 68 (Answer) / 233

20 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

$$\lim_{x \to +\infty} f(x) = \underline{\qquad}$$

Slide 69 / 233


21 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

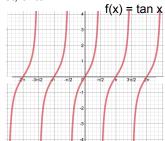
$$\lim_{x \to 0} f(x) = \underline{\qquad \qquad } f(x) = \sin x$$

Slide 70 / 233

21 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D

$$\lim_{x\to 0} f(x) = \underline{\hspace{1cm}}$$

Slide 70 (Answer) / 233


22 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D

$$\lim_{x \to \frac{\pi}{2}} f(x) = \underline{\qquad \qquad }$$

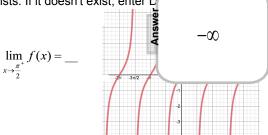
Slide 71 (Answer) / 233

23 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

$$\lim_{x \to \frac{\pi^{-}}{2}} f(x) = \underline{\hspace{1cm}}$$

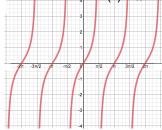
Slide 72 / 233

23 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D'

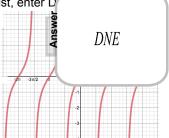

Slide 72 (Answer) / 233

24 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

lim
$$f(x) = 1$$
 $f(x) = 1$ $f(x)$


Slide 73 / 233

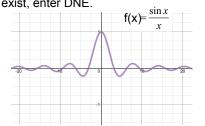
24 Use the given graph to determine the indicated limit if it exists. If it doesn't exist, enter D


Slide 73 (Answer) / 233

$$\lim_{x \to \frac{\pi}{2}} f(x) = \underline{\hspace{1cm}}$$

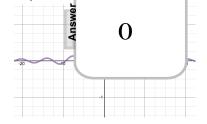
25 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter D

$$\lim_{x \to \frac{\pi}{2}} f(x) = \underline{\hspace{1cm}}$$

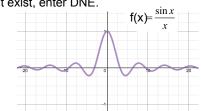


Slide 74 (Answer) / 233

Slide 74 / 233


26 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

$$\lim_{x \to +\infty} f(x) = \underline{\hspace{1cm}}$$



Slide 75 / 233

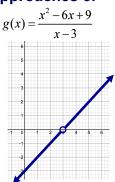
 $\lim_{x\to 0} f(x) = \underline{\hspace{1cm}}$

27 Use the given graph to determine the indicated limit, if it exists. If it doesn't exist, enter DNE.

Slide 76 / 233

27 Use the giver		limit, if
it exists. If it c		sin x
Answer	1	$\frac{\sin x}{x}$
imp	te: Emphasize, that this is a very ortant outcome. Students will see limit many times in our course.	20

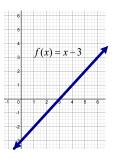
Slide 76 (Answer) / 233


Computing Limits

Return to Table of Contents

Slide 78 / 233

Let us consider two functions: f(x) and g(x), as x approaches 3.


$$f(x) = x - 3$$

Limit Graphically

From the graphical approach it is obvious that f(x) is a line, and as x approaches 3 the value of function f(x) will be equal to zero.

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (x - 3) = 0$$

Slide 79 / 233

What happens in our second case? There is no value of for $g(x)$ when x=3. If we remember that a limit describes what happens to a function as it gets closer and closer to a certain value of x, the function doesn't need to have a value at that x, for the limit to exist. From a graphical point of view, as x gets close to 3 from both the left and right sides, the value of function $g(x)$ will approach zero. Limit Graphically $g(x) = \frac{x^2 - 6x + 9}{x - 3}$ $\frac{x^2 - 6x + 9}{x - 3}$	Slide 80 / 233
	Slide 81 / 233
	Slide 82 / 233

Slide 83 / 233
Slide 84 / 233
Slide 84 (Answer) / 233

Examples:

$$1.\lim_{x\to 0} 3x =$$

$$2.\lim_{x\to 1} 5\sqrt{x-1} =$$

$$3.\lim_{x\to 3} \frac{5x+1}{2x-1} = \underline{\hspace{1cm}}$$

$$4.\lim_{x\to -2}(x^2+5) = \underline{\hspace{1cm}}$$

$$5.\lim_{x\to h} \frac{4x^2}{2x} = _{----}$$

 $5.\lim_{x\to h} \frac{4x^2}{2x} =$ _____

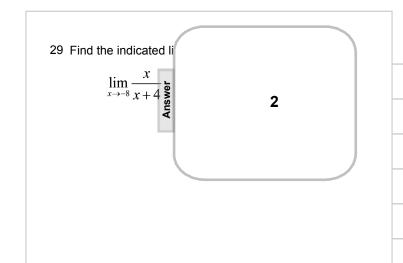
1. $\lim_{x \to 0} 3x = \underbrace{\begin{array}{c} 1. \lim_{x \to 0} 3x = 0 \\ 2. \lim_{x \to 1} 5\sqrt{x - 1} = 0 \end{array}}$ 2. $\lim_{x \to 1} 5\sqrt{x - 1} = 0$ 3. $\lim_{x \to 3} \frac{5x + 1}{2x - 1} = \frac{16}{5}$ 4. $\lim_{x \to -2} (x^2 + 5) = 0$ 5. $\lim_{x \to -2} \frac{4x^2}{2x} = 2h$

Substitution with One-Sided Limits

You can apply the substitution method for one-sided limits as well. Simply substitute the given number into the expression of a function without paying attention if you are approaching from the right or left.

Approaches 1 from the right only.

$$\lim_{x \to \infty} \sqrt{x-1} = 1$$


Approaches 1 from the left only.

$$\lim_{x \to 2^{-}} \sqrt{x - 1} = 1$$

Slide 85 (Answer) / 233

Slide 86 / 233

28 Find the indicated limit.	Slide 87 / 233
$\lim_{x \to 7} 2x$	
28 Find the indicated li	Slide 87 (Answer) / 233
$\lim_{x\to 7} 2x$	
$\lim_{x \to 7} 2x$ \mathbf{H} 14	
29 Find the indicated limit.	Slide 88 / 233
$\lim_{x \to -8} \frac{x}{x+4}$	
$x \rightarrow x + 4$	

30	Find:	tha i	ndica	hate	limit

$$\lim_{x\to 11}\sqrt{2x-6}$$

Slide 89 / 233

30	Find the indicated li		
	$\lim_{x \to 11} \sqrt{2x} = 0$	4	

Slide 89 (Answer) / 233

31 Find the indicated limit.	
$\lim_{x\to 2^+} \sqrt{x-2}$	
$x \rightarrow 2^+$	
	Slide 90 (Answer) / 233
31 Find the indicated liv	
$\lim_{x\to 2^+} \sqrt{x} - \lim_{x\to 2^+} \sqrt{x}$	
An	
	Slide 91 / 233
The Indeterminate Form of 0/0	
The maeterninate Form of 0/0	
Return to Table of	
Contents	

Slide 90 / 233

Zero i	n Numei	rator & I	Denominate	or

What about our previous problem $g(x) = \frac{x^2 - 6x + 9}{x - 3}$?

Substitution will not work in this case. When you plug 3 into the equation, you will get zero on top and zero on bottom. Thinking back to Algebra, when you plug a number into an equation and you got zero, we called that number a root. Now when we get 0/0, that means our numerator and denominator *share* a root. In this case, we then factor the numerator to find that root and reduce. When we solve this problem, we get the predicted answer.

$$\lim_{x \to 3} g(x) = \lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x - 3)}{x - 3} = \lim_{x \to 3} (x - 3) = 0$$

Slide 93 / 233

Slide 92 / 233

Indeterminate Form

A limit where both the numerator and the denominator have the limit zero, as x approaches a certain number, is called a limit with **an indeterminate form 0/0**.

Limits with an indeterminate form 0/0 can quite often be found by using algebraic simplification.

There are many more indeterminate forms other than 0/0:

$$0^{\circ}$$
, 1#, # # #, #/#, $0 \times \#$, and # $^{\circ}$.

We will discuss these types later on in the course.

Simplify and Try Again!

If it is not possible to substitute the value of x into the given equation of a function, try to simplify the expression in order to eliminate the zero in the denominator.

For Example:

- 1. Factor the denominator and the numerator, then try to cancel a zero (as seen in previous example).
- If the expression consists of fractions, find a common denominator and then try to cancel out a zero (see example 3 on the next slides).
- If the expression consists of radicals, rationalize the denominator by multiplying by the conjugate, then try to cancel a zero (see example 4 on the next slides).

\circ	املما	0.4	/	233

	Slide 95 / 233
	Slide 95 (Answer) / 233
Examples:	Slide 96 / 233
$3.\lim_{h\to 0} \frac{\frac{1}{3+h} - \frac{1}{3}}{h} =$	
$h \rightarrow 0$ h	
$4.\lim_{x\to 4}\frac{x-4}{\sqrt{x}-2}=$	
$x \rightarrow 4 \sqrt{x-2}$	

	Examples:
$3.\lim_{h\to 0} \frac{\frac{1}{3+h} - \frac{1}{3}}{h} = 4.\lim_{x\to 4} \frac{x-4}{\sqrt{x}-2} = 4.\lim_{x\to 4} \frac{x-4}$	3. $\lim_{h \to 0} \frac{3+h}{h} = \lim_{h \to 0} \frac{3-3-h}{3} = \lim_{h \to 0} \frac{-h}{(3+h) \cdot 3} = \lim_{h \to 0} \frac{(3+h) \cdot 3}{h} = \lim_{h \to 0} \frac{(3+h) \cdot 3}{h} = \lim_{h \to 0} \frac{1}{(3+h) \cdot 3} = \lim_{h \to 0} \frac{1}{(3+h) \cdot 3} = \lim_{h \to 0} \frac{1}{(3+h) \cdot 3} = \lim_{h \to 0} \frac{x-4}{\sqrt{x}+2} = \lim_{x \to 1} \frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} = \lim_{x \to 1} \frac{(x-4) \cdot (\sqrt{x}+2)}{x-4} = \lim_{t \to 1} (\sqrt{x}+2) = 4$

Slide 97 / 233

Slide 96 (Answer) / 233

Slide 97 / 233

Slide 97 (Answer) / 233

Slide 98 / 233
Slide 98 (Answer) / 233
Slide 99 / 233

Slide 99 (Answer) / 233
Slide 100 / 233
Slide 100 (Answer) / 233

36 Find the limit:	$\lim_{x \to -3} \frac{x+3}{x^2 + 5x + 6} =$
$\Box A - \infty$	

 \Box B 0

□c -1

 \square_{D} DNE

□E 1

Slide 101 / 233

36 Find the limit: $\lim_{x \to -3} \frac{x+3}{x^2 + 5x + \frac{3}{8}}$ Slide 101 (Answer) / 233

C

 $\Box A -\infty$

 \Box B 0

□c -1

 \square_{D} DNE

□E 1

37 Find the limit: $\lim_{x \to 3} \frac{x^2 + 3x - 18}{x^2 - 5x + 6}$

 \circ A ∞

○B 9

 \circ c 0

 $\bigcirc_{\mathsf{D}} \frac{1}{9}$

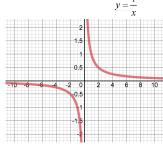
 $\bigcirc E \frac{9}{5}$

Slide 102 / 233

37 Find the limit: $\lim_{x\to 3} x^2$ OA ∞ OB 9 OC 0 OD $\frac{1}{9}$ OE $\frac{9}{5}$	Slide 102 (Answer) / 233
	Slide 103 / 233
	Slide 103 (Answer) / 233

	Slide 104 / 233
	Slide 104 (Answer) / 233
	Slide 105 / 233
Infinite Limits	
Return to	
Table of Contents	

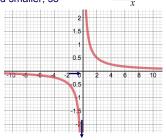
Infinite Limits	Slide 100 / 233
Previously, we discussed the limits of rational functions with the indeterminate form 0/0.	
Now we will consider rational functions where the denominator has a limit of zero, but the numerator does not. As a result, the function outgrows all positive or	
negative bounds.	
Infinite Limits	Slide 107 / 233
We can define a limit like this as having a value of positive infinity or negative infinity:	
If the value of a function gets larger and larger without a bound, we say that the limit has a value of positive infinity . If the value of a function gets smaller and smaller without a	
bound, we say that the limit has a value of negative infinity . Next, we will use some familiar graphs to illustrate this situation.	
next, we will use some familial graphs to illustrate this situation.	
Infinita I imita	Slide 107 (Answer) / 233
We can define which infinity or negative or negative infinity it still means that the limit does not exist. However, we can be more precise saying that a function is going to either ound,	
we say that the to positive or negative infinity	
If the value of a it bound, we say the	
Next, we will use so. situation.	


Slide 106 / 233

The figure to the right represents the function

$$y = \frac{1}{X}.$$

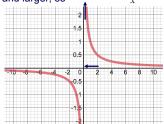
Can we compute the limit?:


$$\lim_{x\to 0}\frac{1}{x}=?$$

Left Hand Limit

In this case, we should first discuss one-sided limits. When \boldsymbol{x} is approaching zero from the left the value of the function becomes smaller and smaller, so

$$\lim_{x\to 0^-}\frac{1}{x}=-\infty$$

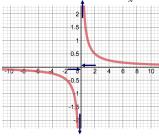


Slide 109 / 233

Right Hand Limit

When x is approaching zero from the right the value of function becomes larger and larger, so

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty$$



Slide 110 / 233

By definition of a limit, a two-sided limit of this function does not exist, because the limit from the left and from the right are not the same:

$$y = \frac{1}{x}$$

$$\lim_{x \to 0} \frac{1}{x} = DNE$$

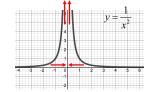
Infinite Limits

The figure on the right represents the function

$$y = \frac{1}{x^2}$$
. Can we compute the limit?:

$$\lim_{x\to 0}\frac{1}{x^2}=?$$

We see that the function outgrows all positive bounds as x approaches zero from the left and from the right, so we can say


$$\lim_{x\to 0^+} \frac{1}{x^2} = +\#, \ \lim_{x\to 0^+} \frac{1}{x^2} = +\#$$

Slide 112 / 233

Slide 113 / 233

Thus, the two-sided limit is:

$$\lim_{x\to 0}\frac{1}{x^2}=+\#.$$

Vertical Asymptote

As we recall from algebra, the vertical lines near which the function grows without bound are vertical asymptotes. Infinite limits give us an opportunity to state a proper definition of the vertical asymptote.

Definition

A line x = a is called a vertical asymptote for the graph of a function if either

$$\lim_{x \to a} f(x) = \pm \# , \lim_{x \to a^+} f(x) = \pm \# ,$$
or
$$\lim_{x \to a} f(x) = \pm \# .$$

Slide 115 / 233

Slide 114 / 233

Example

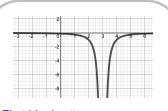
Find the vertical asymptote for the function y = -

First, let us sketch a graph of this function.

It is obvious from the graph, that

$$\lim_{x \to 3} -\frac{1}{(x-3)^2} = \underline{\hspace{1cm}}.$$

So, the equation of the vertical asymptote for this function is _____.


Ε	xa	m	p	le

Find the vertical asymptote fo

First, let us sketch a graph of

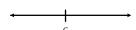
It is obvious from the graph
$$\frac{1}{8}$$
!
$$\lim_{x\to 3} -\frac{1}{(x-3)^2} = \underline{\qquad}$$

So, the equation of the vertical for this function is _

First blank: -# Second blank: x=3 Slide 115 (Answer) / 233

N	lum	hor	Line	Mat	had
N	lum	ber	Line	wet	noa

It seems that in the case when the denominator equals zero, but the numerator does not, as x approaches a certain number, we have to know what the graph looks like, before we can calculate a limit. Actually, this is not necessary.


There is a number line method that will help us to solve these types of problems.

Slide 116 / 233

NUMBER LINE METHOD

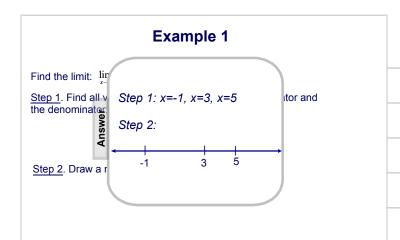
If methods mentioned on previous pages are unsuccessful, you may need to use a Number Line to help you compute the limit. This is often helpful with one sided limits as well as limits involving absolute values, when you are not given a graph.

1. Make a number line marked with the value, "c" which x is approaching.

2. Plug in numbers to the right and left of "c"

Remember... if the limits from the right and left do not match, the overall limit DNE.

Slide 117 / 233


Example 1

Find the limit: $\lim_{x\to 3} \frac{5-x}{(x-3)(x+1)} = ?$

<u>Step 1</u>. Find all values of x that are zeros of the numerator and the denominator:

Step 2. Draw a number line, plot these points.

Slide 118 / 233

Example 1

<u>Step 3.</u> Using the number line, test the sign of the value of thefunction at numbers inside the zeros-interval, near 3, on both the left and right sides. (for example, pick x=2 and x=4).

Slide 119 / 233

Step 3. Us at numbe sides. (fo $f(2) = \frac{5-x}{(x-3)(x+1)} = -1$, that means $\lim_{x \to 3^{-}} \frac{5-x}{(x-3)(x+1)} = -\infty$ $f(4) = \frac{5-x}{(x-3)(x+1)} = \frac{1}{5}$, that means $\lim_{x \to 3^{-}} \frac{5-x}{(x-3)(x+1)} = +\infty$ Finally, $\lim_{x \to 3} \frac{5-x}{(x-3)(x+1)} = DNE$

Slide 119 (Answer) / 233

Exa	m	pl	le	2
_			_	

Use the number line method to find the limit:

$$\lim_{x \to 6} \frac{2 - x}{(x - 6)^2 (x - 4)} = ?$$

	Sli	de	1	20	/	233
--	-----	----	---	----	---	-----

_	v	2	m	n	ما	2
ᆮ	Х	а	m	D	le	_

Use the number line method to

Slide 120 (Answer) / 233

40 Find the limit: $\lim_{x \to 11^-} \frac{x+2}{x-11} = \underline{\hspace{1cm}}$

Slide 121 / 233

	Slide 121 (Answer) / 233
41 Find the limit $\lim_{x \to 11^+} \frac{x+2}{x-11} = \underline{\hspace{1cm}}$	Slide 122 / 233
41 Find the limit $\lim_{x \to 11^+} \frac{x+}{x-}$ try $x=12$ $f(12) = \frac{14}{1}$ that means, $\lim_{x \to 11^+} = +\infty$ Answer: +#	Slide 122 (Answer) / 233

42 Find the limit: $\lim_{x \to 11} \frac{x+2}{x-11} = $	Slide 123 / 233
42 Find the limit: $\lim_{x\to 11} \frac{x+1}{x-1}$ From the previous two problems, one leads to $-\infty$ the other leads to $+\infty$	Slide 123 (Answer) / 233
Answer: DNE	
	Slide 124 / 233

Slide 124 (Answer) / 233
Slide 125 / 233
Slide 125 (Answer) / 233

	Slide 126 / 233
	Slide 126 (Answer) / 233
	Slide 127 / 233
Limits of Absolute Value	
and Piecewise-Defined Functions	
Return to Table of	
Contents	

Abs. Value & Piecewise Limits In the beginning of the unit we used the graphical approach to obtain the limits of the absolute value and the piecewise-defined functions. However, we do not have to graph the given functions every time we want to compute a limit. Now we will offer algebraic methods to find limits of those functions. There is a reason why we discuss the absolute value and the piecewise functions in the same section: the graphs of these functions have two or more parts that are given by different equations. When you are trying to calculate a limit you have to be clear of which equation you have to use.	Slide 128 / 233
	Slide 129 / 233
	Slide 129 (Answer) / 233

$$\lim_{x \to 2} \frac{|x - 2|}{x - 2} = ?$$

It is not possible here to substitute the value of \boldsymbol{x} into the given formula. But we can calculate one-sided limits from the left and from the right. Any number that is bigger than 2 will turn the given expression into 1 and any number that is less than 2 will turn this expression into -1, so:

$$\lim_{x \to 2^+} \frac{|x-2|}{x-2} = 1$$

$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2} = -1$$

Therefore,
$$\lim_{x\to 2} \frac{|x-2|}{x-2} = DNE$$

Slide 131 / 233

Slide 130 / 233

Example:

Find the indicated limits:

1.
$$\lim_{x \to -5} \frac{|x+5|}{x+5} =$$

$$2. \lim_{x \to -5^+} \frac{|x+5|}{x+5} = \underline{\hspace{1cm}}$$

$$3. \lim_{x \to -5} \frac{|x+5|}{x+5} = \underline{\hspace{1cm}}$$

Example:

Find the indicated limits:

1.
$$\lim_{x \to -5^{+}} \frac{|x+5|}{x+5} =$$
2. $\lim_{x \to -5^{+}} \frac{|x+5|}{x+5} =$

$$2. \lim_{x \to -5^+} \frac{|x+5|}{x+5} = \underline{\hspace{1cm}}$$

$$3. \lim_{x \to -5} \frac{|x+5|}{x+5} = \underline{\hspace{1cm}}$$

$$1. \lim_{x \to -5^{-}} \frac{|x+5|}{x+5} = -1$$

$$2. \lim_{x \to -5^{+}} \frac{|x+5|}{x+5} = 1$$

$$3. \lim_{x \to -5} \frac{|x+5|}{x+5} = DNE$$

Slide 131 (Answer) / 233

46 Find the limit: $\lim_{x \to 0^+} \frac{ x }{x}$	Slide 132 / 233
$x \rightarrow 0^+ \chi$	
46 Find the limit: $\lim_{x \to 0^+} \frac{ x }{x}$	Slide 132 (Answer) / 233
x→0 ⁺ X	
P. C.	
	Slide 133 / 233
47 Find the limit: $ x $	Slide 155 / 255
$\lim_{x\to 0^-} \frac{ x }{x}$	

47 Find the limit: $\lim_{x \to 0^{-}} \frac{ x }{x}$	Slide 133 (Answer) / 233
$\lim_{x\to 0^-} \frac{1}{x} = \frac{1}{x}$	
48 Find the limit:	Slide 134 / 233
$\lim_{x\to 0} \frac{ x }{x}$	
48 Find the limit:	Slide 134 (Answer) / 233
$\lim_{x\to 0} \frac{ x }{x}$ DNE	

49 Find the limit:	
$\lim_{x\to 0^-} \frac{5 x }{x}$	

|--|

$$\lim_{x \to 0^-} \frac{5|x|}{x}$$

Slide 135 (Answer) / 233

50 Find the limit:

$$\lim_{x \to 0^+} \frac{5|x|}{x}$$

Slide 136 / 233

50 Find the limit: $\lim_{x \to 0^+} \frac{5 x }{x}$	Slide 136 (Answer) / 233
51 Find the limit: $\lim_{x\to 0} \frac{5 x }{x}$	Slide 137 / 233
51 Find the limit: $\lim_{x\to 0} \frac{5 x }{x}$ DNE	Slide 137 (Answer) / 233

Piecewise Limits The key to calculating the limit of a piecewise function is to identify the interval that the x value belongs to. We can simply compute a limit of the function that is represented by the equation when x lies inside that interval. It may sound a lit bit tricky, however it is quite simple if you look at the next example.	Slide 138 / 233
	Slide 139 / 233
	Slide 139 (Answer) / 233

Two-Sided Piecewise Limits	
A two-sided limit of the piecewise function at the point where the formula changes is best obtained by first finding the one sided limits at this point.	
If limits from the left and the right equal the same number, the two-sided limit exists, and <i>is</i> this number. If limits from the left and the right are not equal, than the two-sided limit	
does not exist.	
Example: Find the indicated limit of the piecewise function:	Slide 141 / 233
Find the indicated limit of the piecewise function: $\lim_{x \to -3} f(x) = ?$ $f(x) = \begin{cases} \frac{1}{x+3}; & x < -3 \\ x^2 - 12; & -3 < x \le 4 \\ \sqrt{x+12}; & x > 4 \end{cases}$	
First we will calculate the one-sided limit from the left of the function represented by which formula?	
	Slide 141 (Answer) / 233

Slide 140 / 233

	Slide 142 / 233
	Slide 142 (Answer) / 233
Example:	Slide 143 / 233
Find the indicated limit of the piecewise function: $ \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & 3 \end{bmatrix} $	
$\lim_{x \to 4} f(x) = ? \qquad f(x) = \begin{cases} \frac{1}{x+3}; x < -3\\ x^2 - 12; -3 < x \le 4\\ \sqrt{x+12}; x > 4 \end{cases}$	
1. First, we will calculate one-sided limit from the left of the function	
represented by which formula?	

Example:	
Find the indicated limit of the pier Calculate the limit from the left using this formula. $\lim_{x\to 4} f(x) = ? \qquad f(x)$ 1. First, we will calculate one-s represented by which formula? $\lim_{x\to 4^-} (x^2 - 12) = 4$	
Example:	Slide 144 / 233
Find the indicated limit of the piecewise function: $\frac{1}{1} : x < -3$	
$\lim_{x \to 4} f(x) = ? \qquad f(x) = \begin{cases} \frac{1}{x+3}; x < -3 \\ x^2 - 12; -3 < x \le 4 \\ \sqrt{x+12}; x > 4 \end{cases}$	
Then we can calculate one-sided limit from the right of the function represented by which formula?	
	Slide 144 (Answer) / 233

Slide 143 (Answer) / 233

Slide 145 / 233
Slide 145 (Answer) / 233
Slide 146 / 233

Slide 146 (Answer) / 233
Slide 147 / 233
0.000 1 11 / 200
Slide 147 (Answer) / 233
Sildo 117 (7 tilovol) / 200

Slide 148 / 233
Slide 148 (Answer) / 233
Olide 140 (Aliswel) / 200
Slide 149 / 233

Slide 149 (Answer) / 233
Slide 150 / 233
Sildo 1007 200
Slide 150 (Answer) / 233

Limits of End Behavior

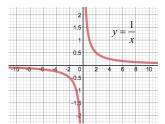
Return to Table of Contents

Slide	152	/	233
Olluc	102	/	200

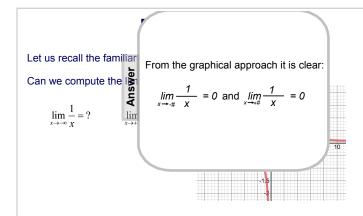
End Behavior

In the previous sections we learned about an indeterminate form 0/0 and vertical asymptotes. The indeterminate forms such as $1^{\infty},\ \infty-\infty,\ \infty/\infty,\ 1/\#$ and others will lead us to the discussion of the end of the behavior function and the horizontal asymptotes.

Definition


The behavior of a function f(x) as x increases or decreases without bound (we write $x \rightarrow +\infty$ or $x \rightarrow -\#$) is called the end behavior of the function.

End Behavior


Let us recall the familiar function $y = \frac{1}{x}$

Can we compute the limits:

$$\lim_{x \to -\infty} \frac{1}{x} = ? \qquad \qquad \lim_{x \to +\infty} \frac{1}{x} = ?$$

Slide 153 / 233

End Behavior and Horizontal Asymptotes

In general, we can use the following notation.

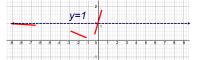
If the value of a function f(x) eventually get as close as possible to a number L as x increases without bound, then we write:

$$\lim_{x \to +\infty} f(x) = L$$

Similarly, if the value of a function f(x) eventually get as close as possible to a number L as x decreases without bound, then we write:

$$\lim_{x \to -\infty} f(x) = L$$

We call these limits Limits at Infinity and the line y=L is the horizontal asymptote of the function f(x).


Slide 154 / 233

End Behavior

The figure below illustrates the end behavior of a function and the horizontal asymptotes *y=1*.

$$\lim_{x \to 0} f(x) = 1$$

$$\lim f(x) = 1$$

Slide 155 / 233

Slide 156 / 233
Slide 157 / 233
Slide 158 / 233

Infir	- 14 -		- 14 -
Intil	מדור	ı ın	1 ITC

Consider
$$\lim_{x \to +\infty} \frac{x^3}{x^2} = \frac{+\infty}{+\infty}$$
 Is the limit 1?

It is not, because if we reduce the rational expression before substituting, we will get the limit $\,:\,$

$$\lim_{x\to +\infty} x = +\infty$$

In calculus, we have to divide each term by the highest power of x, then take the limit. Remember that a number/# is 0 as we have seen in a beginning of the section. For example,

$$\lim_{x \to +\infty} \frac{2}{x} = 0$$

Slide 160 / 233		
Slide 160 (Answer) / 233		

Slide 159 / 233

Slide 161 / 233
Slide 161 (Answer) / 233
Slide 162 / 233

	1	ı .	•
ĸ	ш	Ф	

Rule 2. If the highest power of *x* appears in the numerator (top heavy), then

$$\lim_{x \to +\infty} f(x) = \pm \infty$$

In order to determine the resulting sign of the infinity you will need

to plug in very large positive or very large negative numbers . Look closely at the examples on next pages to understand this rule clearly.

Slide 164 / 233

Slide 163 / 233

Examples

$$1a. \lim_{x \to +\infty} \frac{5x^7 - 2x^5 + 15}{2x^4 + 21x^3 + 3x} = +\infty$$

For rational functions, the end behavior matches the end behavior of the quotient of the highest degree term in the numerator divided by the highest degree term in the denominator. So, in this case the function will behave as $y=x^3$. When x approaches positive infinity, the limit of the function will go to positive infinity.

$$1b. \lim_{x \to -\infty} \frac{5x^7 - 2x^5 + 15}{2x^4 + 21x^3 + 3x} = -\infty$$

When \boldsymbol{x} approaches negative infinity in the same problem, the limit of function will go to negative infinity.

Slide 165 / 233

Slide 166 / 233
Slide 167 / 233
Slide 167 (Answer) / 233

Try These on Your Own

$$\lim_{x\to\infty}\frac{4x+5}{3x-1} = \underline{\qquad}$$

$$\lim_{x \to -\infty} \frac{5x^2 + 3x - 1}{4x + 7} = \underline{\hspace{1cm}}$$

$$\lim_{x \to \infty} \frac{5x^2 + 7}{x^3 + 1} = \underline{\hspace{1cm}}$$

$$\lim_{x \to -\infty} \frac{2x^5 - 11x^7}{6x^2 + 21} = \underline{\hspace{1cm}}$$

Slide 168 / 233

$$\lim_{x \to \infty} \frac{4x+5}{3x-1} = \lim_{x \to \infty} \frac{4x+5}{3x-1} = \frac{4}{3} \qquad \text{rule 3}$$

$$\lim_{x \to \infty} \frac{5x^2+3}{4x+7} = -\infty \qquad \text{rule 2, example 1b}$$

$$\lim_{x \to \infty} \frac{5x^2+7}{x^3+1} = \lim_{x \to \infty} \frac{5x^2+7}{x^3+1} = 0 \qquad \text{rule 1}$$

$$\lim_{x \to \infty} \frac{2x^5-11x^7}{6x^2+21} = +\infty \qquad \text{rule 2}$$

Slide 168 (Answer) / 233

Slide 169 / 233

Slide 170 / 233
Slide 170 (Answer) / 233
Clido 171 / 222
Slide 171 / 233

	Slide 171 (Answer) / 233
59 Find the indicated limit.	Slide 172 / 233
$\lim_{x\to +\infty} \frac{2}{x-4} =$	
59 Find the indicated lim	Slide 172 (Answer) / 233
$\lim_{x \to +\infty} \frac{2}{x-4} = $	
•	

	Slide 173 / 233
	Slide 173 (Answer) / 233
$61 3x^3 + 4x - 2$	Slide 174 / 233
$\lim_{x \to -\infty} \frac{3x^3 + 4x - 2}{4x^3 + 5x} =$	
$\bigcirc A 0$	
$\bigcirc B \frac{3}{4}$ $\bigcirc C \frac{-3}{4}$ $\bigcirc D -\infty$	
$OC = \frac{5}{4}$	

61
$$\lim_{x \to -\infty} \frac{3x^3 + 4x - 2}{4x^3 + 5x}$$

OA 0

OB $\frac{3}{4}$

B

Slide 174 (Answer) / 233

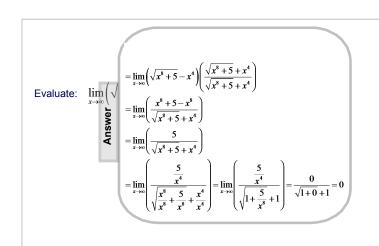
62
$$\lim_{x \to -\infty} \frac{3x^3 + 4x - 2}{\sqrt{4x^6 - 7} + 5x}$$

 $\bigcirc \mathsf{A} \quad 0$

 $\bigcirc D -\infty$

 $\bigcirc B \quad \frac{3}{2}$

 $\bigcirc C = \frac{-3}{2}$

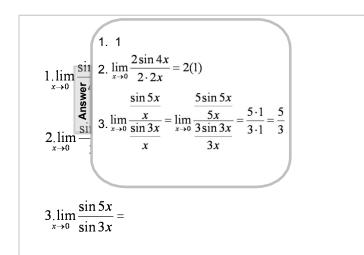

○D -∞

Slide 175 / 233

62 $\lim_{x \to -\infty} \frac{3x^3 + 4x^6}{\sqrt{4x^6 - 4x^6}}$	$\frac{4x-2}{7+5}$		
\bigcirc A 0	Answer	С	
\bigcirc B $\frac{3}{2}$	Ans		
\bigcirc C $\frac{-3}{2}$			
○ D ∞			

Slide 175 (Answer) / 233

	Slide 176 / 233
Using Conjugates	Slide 177 / 233
Use conjugates to rewrite the expression as a fraction,then solve like # /#.	
$\lim_{x\to\infty} \left(x^3 - x^2\right)$	
$\lim_{x \to \infty} (x^3 - x^2) \left(\frac{x^3 + x^2}{x^3 + x^2} \right)$	
$\lim_{x\to\infty} \left(\frac{x^6 - x^4}{x^3 + x^2} \right)$	
$\lim_{x \to \infty} \left(\frac{\frac{x^6}{x^6} - \frac{x^4}{x^6}}{\frac{x^3}{x^6} + \frac{x^2}{x^6}} \right) = \lim_{x \to \infty} \left(\frac{1 - \frac{1}{x^2}}{\frac{1}{x^3} + \frac{1}{x^4}} \right) = \frac{1 - 0}{0 + 0} = \frac{1}{0} = +\infty$	
$\left(\frac{x}{x^6} + \frac{x}{x^6}\right) = \left(\frac{1}{x^3} + \frac{1}{x^4}\right) = 0 + 0$	
Example	Slide 178 / 233
Evaluate: $\lim_{x\to\infty} \left(\sqrt{x^8 + 5} - x^4 \right)$	


63		([()	
	lim	$(\sqrt{x^6 + 5x^3 - x^3})$	
	$r \rightarrow \infty$	1	

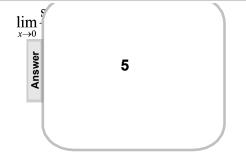
Slide 179 / 233

$\lim_{x \to \infty} \left(\sqrt{x^6 + 5x^3} - \frac{1}{2} \right)$	$\frac{5}{2}$

Slide 179 (Answer) / 233

	Slide 180 / 233
Trig Limits	
Return to	
Table of Contents	
	Slide 181 / 233
Examples	Slide 182 / 233
$\lim_{x\to 0} \frac{\sin 4x}{4x} =$	
$2.\lim_{x\to 0}\frac{\sin 4x}{2x}=$	
$x \to 0$ $2x$	
$3.\lim_{x\to 0}\frac{\sin 5x}{\sin 3x} =$	
$x \to 0$ $\sin 3x$	

Slide 182 (Answer) / 233

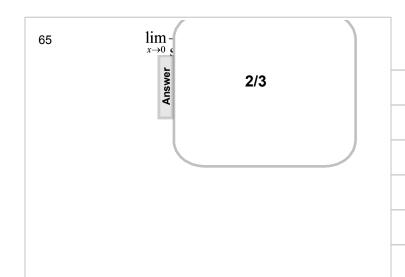

Slide 183 (Answer) / 233

Slide 183 / 233

_
6 /
T)4

$$\lim_{x \to 0} \frac{\sin 5x}{x} = 2$$

Slide 184 / 233



Slide 184 (Answer) / 233

65

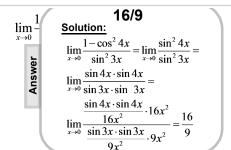
$$\lim_{x\to 0} \frac{2x}{\sin 3x} = ?$$

Slide 185 / 233

	$\lim \frac{x}{x} = ?$
66	$\lim_{x\to 0} \frac{1}{\cos x - 1} = x$
	COSA

Slide 186 / 233

66	lim - (DNE	

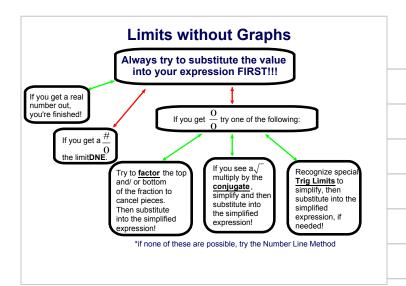

Slide 186 (Answer) / 233

6	7
υ	1

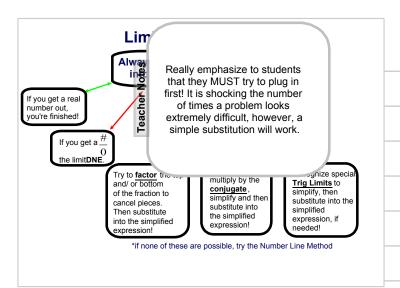
$$\lim_{x \to 0} \frac{1 - \cos^2 4x}{\sin^2 3x} = ?$$

Slide 187 / 233

	_
-	-


Slide 187 (Answer) / 233

$$\lim_{x\to 0}\frac{\tan^2 x}{3x}=?$$


Slide 188 / 233

$\lim_{x\to 0} \frac{1}{x}$	Slide 188 (Answer) / 233
Answer 0	
	Slide 189 / 233
	Slide 109 / 255
	Clido 100 / 222
Limits Summary & Plan of Attack	Slide 190 / 233
It can seem very overwhelming to think about all the possible strategies used for limit questions. Hopefully, the next pages will provide you with a game plan to approach limit problems with confidence.	
approach limit problems with confidence.	

	Slide 191 / 233
Limits with Graphs	Slide 192 / 233
y 5 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5	
2 4	
5	
Use this slide to emphasize the 5 different types of questions your students may be asked. Use the given graph to ask students different questions at specific x- values. For example: What is f(-2)? What is the $\lim_{x \to 2}$? What is the $\lim_{x \to 2}$? Is the graph continuous at -2?	Slide 192 (Answer) / 233

Slide 193 / 233

Slide 193 (Answer) / 233

Slide 194 / 233

	Slide 194 (Answer) / 233
	Slide 195 / 233
Continuity	
Return to Table of Contents	
Continuity	Slide 196 / 233
At what points do you think the graph below is continuous? At what points do you think the graph below is discontinuous?	
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	
•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
What should the definition of continuous be?	
1	

AP Calculus Definition of Continuous

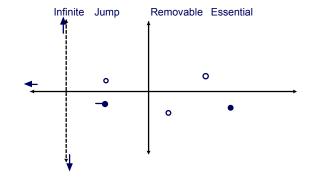
- 1) f(a) exists
- 2) $\lim_{x \to a} f(x)$ exists
- 3) $\lim_{x \to a} f(x) = f(a)$

This definition shows $\underline{\text{continuity at a point}}$ on the interior of a function.

For a function to be continuous, every point in its domain must be continuous.

Slide 197 / 233

Continuity at an Endpoint


Replace step 3 in the previous definition with:

Left Endpoint:
$$\lim_{x \to a^+} f(x) = f(a)$$

Right Endpoint:
$$\lim_{x \to a^-} f(x) = f(a)$$

Slide 198 / 233

Types of Discontinuity

Slide 199 / 233

	Slide 200 / 233
	Slide 200 (Answer) / 233
	Slide 201 / 233
70 Given the function decide if it is continuous or not. If it is not state the reason it is not.	
y = x	
○ A continuous	
\bigcirc B \bigcirc C $\lim_{x \to a} f(x)$ does not exist for all a	
$\bigcirc D \lim_{x \to a} f(x) = f(a) \text{ is not true for all a}$	

70 Given the function decide if it is continuous or not. If it is not state the reason it is not.

Slide 201 (Answer) / 233

71 Given the function decide if it is continuous or not. If it is not state the reason it is not.

$$y = \frac{1}{x}$$

- A continuous
- \bigcirc B

а

○ C f(a) does not exist for all lama fictx)

does not exis

 $\bigcirc D \quad \lim_{x \to a} f(x) = f(a)$

is not true for all a

Slide 202 / 233

71 Given the function If it is not state the		continuous or r	nat
○ A continuous○ B	y=	С	
○ C f(a) does not	exist		exis
$\bigcirc D \lim_{x \to a} f(x) = f(a)$			

Slide 202 (Answer) / 233

	Slide 203 / 233
	Slide 203 (Answer) / 233
	Slide 204 / 233

Slide 204 (Answer) / 233
Slide 205 / 222
Slide 205 / 233
Slide 205 (Answer) / 233

74 What value(s) would	remove	the d	liscontinuity(s) of
the given function?	2 -			

$$f(x) = \frac{x^2 + 3x}{x + 3}$$

- □A -3 □F 1/2
- □B -2 □G 1
- □C -1 □H 2
- □D -1/2 □I 3
- □E 0 □J DNE

74 What value(s) would remove the discontinuity(s) of the given function?

the given function?
$$f(x) = \begin{bmatrix} & & & & & & \\ & f(x) = & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

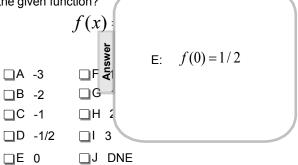
Slide 206 (Answer) / 233

Slide 206 / 233

75 What value(s) would remove the discontinuity(s) of the given function?

□J DNE

$$f(x) = \frac{\sin x}{2x}$$


- □A -3 □F 1/2
- □B -2 □G 1

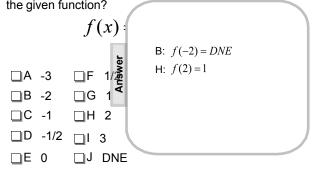
□ E 0

- □C -1 □H 2
- □D -1/2 □I 3
- □E 0 □J DNE

Slide 207 / 233

75 What value(s) would remove the discentionity(s) of	
the given function?	

Slide 207 (Answer) / 233


76 What value(s) would remove the discontinuity(s) of the given function?

$$f(x) = \frac{x-2}{|x|-2}$$

- □A -3 □F 1/2
- □B -2 □G 1
- □C -1 □H 2
- □D -1/2 □I 3
- □E 0 □J DNE

Slide 208 / 233

76 What value(s) would remove the discontinuity(s) of the given function?

Slide 208 (Answer) / 233

Making a Function Continuous

$$f(x) = \begin{cases} x^2 - 1; x < 3 \\ 2ax; x \ge 3 \end{cases}$$
, find a so that f(x) is continuous.

Both 'halves' of the function are continuous. The concern is $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^+} f(x)$

Slide 209 / 233

Making a Function Continuous

$$f(x) = \begin{cases} x^2 - 1; x < 3 \\ 2ax; x \ge 3 \end{cases}$$
 Both 'halves' of the function are making
$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(x)$$

$$3^2 - 1 = 2a(3)$$

$$8 = 6a$$

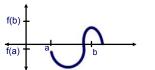
$$\frac{4}{3} = a$$

Slide 209 (Answer) / 233

SI	i	de	Э	2	1	0	/	2	3	3
----	---	----	---	---	---	---	---	---	---	---

Slide 210 (Answer) / 233
Slide 211 / 233
Slide 211 (Answer) / 233
G (,, , 200
I and the second

Intermediate Value Theorem

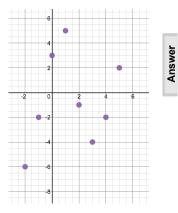

Return to Table of Contents

Slide 213 / 233

The Intermediate Value Theorem

The characteristics of a function on closed continuous interval is called The Intermediate Value Theorem.

If f(x) is a continuous function on a closed interval [a,b], then f(x) takes on every value between f(a) and f(b).



This comes in handy when looking for zeros.

Finding Zeros

Can you use the Intermediate Value Theoremto find the zeros of this function?

X	Y
-2	-6
-1	-2
0	3
1	5
2	-1
3	-4
4	-2
5	2

Slide 214 / 233

79 Give the letter that lies in the same interval as a zero of this continuous function.	Slide 215 / 233
Y -2 -1 0.5 2 3	
80 Give the letter that lies in the sameinterval as a zero of this continuous function.	Slide 216 / 233
X 1 2 3 4 5 Y 4 3 2 1 -1	
81 Give the letter that lies in thesame interval as a zero of this continuous function.	Slide 217 / 233
X 1 2 3 4 5 Y -2 -1 -0.5 2 3	

Difference Quotient Return to Table of Contents	
Now that you are familiar with the different types of limits, we can discuss real life applications of this very important mathematical term. You definitely noticed that in all formulas stated in the previous section, the numerator is presented as a difference of a function or, in another words, as a change of a function; and the denominator is a point difference. Such as: $\frac{y_1-y_0}{x_1-x_0} = \frac{\Delta y}{\Delta x} = \frac{f(x_1)-f(x_0)}{\Delta x} = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_0+h)-f(x_0)}{h}$ We call this a Difference Quotient or an Average Rate of Change. If we consider a situation when x approaches x_0 ($x_1 \rightarrow x_0$), which means $x_0 \rightarrow x_0$, or $x_0 \rightarrow x_0$	Slide 219 / 233
Example Draw a possible graph of traveling 100 miles in 2 hours. Distance Time 2	Slide 220 / 233

Slide 218 / 233

Average Rate of Change	Slide 221 / 233
Using the graph on the previous slide: What is the average rate of change for the trip?	
Is this constant for the entire trip?	
What formula could be used to find the average rate of change between 45 minutes and 1 hour?	
Average Rate of Change	Slide 222 / 233
The slope formula of $\frac{d_2 - d_1}{d_1}$ represents the Velocity or	

from (t_1,d_1) to (t_2,d_2) .

Average Rate of Change. This is the slope of the secant line

Suppose we were looking for Instantaneous Velocity at 45 minutes, what values of (t_1,d_1) and (t_2,d_2) should be used?

Is there a better approximation?

The	Difference	Quotient

The closer (t_1,d_1) and (t_2,d_2) get to one another the better the approximation is.

Let h represent a very small value so that (x, f(x)) and (x+h, f(x+h))are 2 points that are very close to each other.

The slope between them would be f(x+h)-f(x)And since we want h to "disappear" we use

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

This is called the Difference Quotient.

Slide 223 / 233

_				
\mathbf{r}	~ "		~4:	
ப	en	ıv	au	ve

The Difference Quotient gives the instantaneous velocity, which is the slope of the tangent line at a point.

A derivative is used to find the slope of a tangent line. So, the Difference Quotient can be used to find a derivative algebraically.

Slide 224 / 233

Example of the Difference Quotient

Find the slope of the tangent line to the function $f(x) = 2x^2 - x + 4$ at x=3

Find the s at x=3. Find the s at x=3. $\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}$ $=\lim_{h\to 0} \frac{\left(2(3+h)^2-(3+h)+4\right)-\left(2(3)^2-(3)+4\right)}{h}$ $=\lim_{h\to 0} \frac{\left(2(9+6h+h^2)-(3+h)+4\right)-\left(2(9)-(3)+4\right)}{h}$ $=\lim_{h\to 0} \frac{\left(18+12h+2h^2-3-h+4\right)-\left(19\right)}{h}$ $=\lim_{h\to 0} \frac{\left(2h^2+11h+19\right)-\left(19\right)}{h} = \lim_{h\to 0} \frac{2h^2+11h}{h} = \lim_{h\to 0} 2h+11=11$

Slide 225 (Answer) / 233

Example of the Difference Quotient	Slide 226 / 233
Find an equation that can be used to find the slope of the tangent line at any point on the function $f(x) = 3x^3 - 8$	
Example of the Difference Quotient Find an equ: $\lim_{h\to 0} \frac{(3(x+h)^3-8)-(3x^3-8)}{h}$ line	Slide 226 (Answer) / 233
$= \lim_{h \to 0} \frac{\left(3(x^3 + 3x^2h + 3xh^2 + h^3) - 8\right) - \left(3x^3 - 8\right)}{h}$	
$= \lim_{h \to 0} \frac{3x^3 + 9x^2h + 9xh^2 + 3h^3 - 8 - 3x^3 + 8}{h}$ $= \lim_{h \to 0} \frac{9x^2h + 9xh^2 + 3h^3}{h}$	
$\lim_{h \to 0} (9x^2 + 9xh + 3h^2) = 9x^2$ To find the slope at x=2, sub 2 into 9x². So the slope at x=2 is 36.	
55 M.5 SISPS SI. A. 2 10 50.	

Slide 227 / 233

Slide 227 (Answer) / 233
Slide 228 / 233
Slide 228 (Answer) / 233

Slide 229 (Answer) / 233 Slide 230 / 233	Slide 229 / 233
Slide 230 / 233	Slide 229 (Answer) / 233
Slide 230 / 233	
	Slide 230 / 233

	Slide 230 (Answer) / 233
	Slide 231 / 233
	Slide 231 (Answer) / 233

	Slide 232 / 233	
	Slide 232 (Answer) / 233	
	Slide 233 / 233	

Slide 233 (Answer) / 233